Embedded eigenvalues and the nonlinear Schrödinger equation

Published:

Reza Asad, Gideon Simpson. Journal of Mathematical Physics 2011.

[PDF][Code]

Abstract

A common challenge to proving asymptotic stability of solitary waves is understanding the spectrum of the operator associated with the linearized flow. The existence of eigenvalues can inhibit the dispersive estimates key to proving stability. Following the work of Marzuola & Simpson, we prove the absence of embedded eigenvalues for a collection of nonlinear Schr¨odinger equations, including some one and three dimensional supercritical equations, and the three dimensional cubic-quintic equation. Our results also rule out nonzero eigenvalues within the spectral gap and, in 3D, endpoint resonances. The proof is computer assisted as it depends on the sign of certain inner products which do not readily admit analytic representations. Our source code is available for verification at http://www.math.toronto.edu/simpson/files/spec_prop_asad_simpson_code.zip.